Berangkatdari informasi tersebut, demikian didapat persamaan α + β + 90 ° = 180 °. Ingat: Pada segitiga siku-siku, salah satu sudutnya adalah 90 °. Sehingga hubungan antara kedua sudut tersebut yaitu: Artinya, sin α = sin (90 ° - β) = cos β, begitu juga sebaliknya cos (90 ° - β) = sin β.
Segitigasama sisi memiliki tiga sisi yang sama panjang dan sudut yang sama besar yaitu 60 o. Segi tiga siku-siku, memiliki salah satu sudut yaitu 90 o dan dua titik sudut lainnya yaitu 45 o. Segi tiga tumpul memiliki satu sudut tumpul di antara 90 o sampai 180 o. Segitiga lancip dengan ketiga sudutnya membentuk sudut lancip yaitu di antara 0 o
Mencarisudut segitiga sama sisi. Sebuah segitiga sama sisi memiliki tiga sisi yang sama panjang dan tiga sudut yang sama besar. Masing-masing sisinya biasanya ditandai dengan dua garis pendek di tengah-tengah. Karena ketiga sudutnya sama besar, itu berarti semua sudutnya berukuran 60 derajat, karena 180/3 = 60.
Karenasegitiga tersebut adalah sama kaki, maka sisi miring lainnya memiliki panjang yang sama, yaitu 6 cm. K = sisi1 + sisi2 + sisi3. = 4 + 6 + 6. = 16 cm. 3. Suatu segitiga siku siku memiliki sisi a, b, c berturut-turut 5, 6, dan 7. Tentukan keliling dari segitiga tersebut! Pembahasan: K = a + b + c.
Vay Tiền Nhanh Ggads. Ada beberapa cara menghitung panjang sisi dan besar sudut suatu segitiga. Salah satu cara untuk mencari panjang sisi atau besar sudut pada segitiga adalah dengan menggunakan hukum Sinus pada Suatu Sudut Untuk memahami tentang hukum sinus perhatikan segitiga siku-siku suatu sudut adalah sisi panjang sisi tegak di hadapan sudut dibagi dengan panjang sisi miring yang membentuk sudut hukum sinus tersebut maka panjang sisi tegak suatu segitiga siku-siku sama dengan panjang sisi miring dikalikan dengan sinus sudut dihadapannya. Berdasarkan gambar di atas maka sisi tegak segitiga siku-siku tersebut dapat dinyatakan sebagai y = Panjang Sisi atau Besar Sudut Segitiga dengan Hukum Sinus Segitiga sembarang adalah segitiga yang tidak harus memiliki besar sudut tertentu, atau panjang sisi tertentu. Sedangkan segitiga istimewa terikat dengan aturan besarnya sudut dan panjang sisi berupa segitiga sama sisi, segitiga sama kaki dan segitiga siku-siku. Tentu saja segitiga-segitiga istimewa juga termasuk dalam pembahasan segitiga sembarang di atas. A, B, dan C adalah sudut-sudut segitiga. Sedangkan a, b, dan c adalah sisi-sisi segitiga. Jika kita tarik garis tinggi x dari titik sudut C maka panjang garis tinggi tersebut dapat dinyatakan dalam suatu persamaan berdasarkan hukum sinus sebagai persamaan di atas maka kita dapat menghitung panjang suatu sisi segitiga jika diketahui dua sudut dan satu sisi dengan persamaan berikut. Misalkan kita ingin menentukan panjang sisi juga dapat menghitung besar suatu sudut segitiga jika diketahui dua sisi dan satu sudut dengan persamaan berikut. Misalkan kita ingin menentukan besar sudut Cara Menghitung Panjang Sisi Atau Besar Sudut menggunakan Hukum SinusContoh Soal 1 Soal Hitunglah panjang sisi AB pada segitiga ABC di awah sinC / sisi AB = sinB / sisi AC sisi AB = [sinC / sinB] . sisi AC AB = [sin76 / sin34] . 11 AB = [0,970 / 0,559] . 11 AB = 1,735 . 11 = 19,1 Jadi panjang sisi AB adalah 19,1 cmContoh Soal 2 Soal Berapa besar sudut PRQ pada segitiga berikut ini?Jawab sinR / sisi PQ = sinP / sisi QR sinR = sisi PQ / sisi QR . sinP sinR = 30 / 23 . 0,719 sinR = 1,304.0,719 sinR = 0,938 R = arc-sin0,938 = 69,7 Jadi besar sudut PRQ adalah 69,7o
Blog Koma - Matematika SMP Sebelumnya kita telah mempelajari materi "Jenis-jenis dan Sifat-sifat Segitiga", pada artikel kali ini kita khusus membahas materi Sudut-sudut pada Segitiga. Untuk mempermudah, juga baca materi yang ada kaitannya dengan sudut-sudut yaitu "hubungan antar sudut". Jumlah ketiga Sudut pada Segitiga Perhatikan gambar segitiga ABC berikut, *. gambar b, pada sudut-sudut segitiga ABC dipotong berdasarkan garis k, l dan m sehingga terbentuk tiga potongan yang sudah diberi nomor seperti gambar b. *. dari ketiga potongan pada gambar b kemudian disatukan sedemikian terbentuk seperti gambar c, dimana ketiga bangun membentuk garis lurus. Artinya ketiga sudut segitiga jumlahnya $180^\circ$. Sehingga Jumlah ketiga sudut pada segitiga adalah 180$^\circ \, $ yaitu $ \angle A + \angle B + \angle C = 180^\circ $. Contoh 1. Diketahui pada $\Delta$PQR, besar $\angle$P =48$^\circ$ dan $\angle$Q = 72$^\circ$. Hitunglah besar $\angle$R. Penyelesaian *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle P + \angle Q + \angle R & = 180^\circ \\ 48^\circ + 72^\circ + \angle R & = 180^\circ \\ 120^\circ + \angle R & = 180^\circ \\ \angle R & = 180^\circ - 120^\circ \\ \angle R & = 60^\circ \end{align} $ Jadi, besar $ \angle R = 60^\circ $. 2. Perhatikan segitiga KLM berikut, Dari segitiga KLM di atas, tentukan nilai $ x \, $ dan besar semua sudut-sudut segitiganya. Penyelesaian *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle K + \angle L + \angle M & = 180^\circ \\ x + 2x + 3x & = 180^\circ \\ 6x & = 180^\circ \\ x & = \frac{180^\circ}{6} \\ x & = 30^\circ \end{align} $ sehingga nilai $ x = 30^\circ $. *. Menentukan besar sudut-sudut segitiganya $ \begin{align} \angle K & = x = 30^\circ \\ \angle L & = 2x = 2\times 30^\circ = 60^\circ \\ \angle M & = 3x = 3\times 30^\circ = 90^\circ \end{align} $ Jadi, besar $\angle $K, $\angle $L, dan $\angle $M berturut-turut adalah 30$^\circ$, 60$^\circ$, dan 90$^\circ$. 3.Pada $\Delta$ABC diketahui $\angle $A = 50$^\circ$. Jika B C = 2 3, tentukan besar $\angle $B dan $\angle $C. Penyelesaian *. Kita kalikan $a $ untuk perbandingan yang ada, $ \frac{B}{C} = \frac{2}{3} \rightarrow \frac{B}{C} = \frac{2a}{3a} $ artinya besar $ \angle B = 2a \, $ dan $ \angle C = 3a $. *. Menentukan nilai $ a $, $ \begin{align} \angle A + \angle B + \angle C & = 180^\circ \\ 50^\circ + 2a + 3a & = 180^\circ \\ 5a & = 130^\circ \\ a & = \frac{130^\circ}{5} = 26^\circ \end{align} $ *. Menentukan besar sudut B dan C dengan $ a = 26^\circ $ $ \begin{align} \angle B & = 2a = 2 \times 26^\circ = 52^\circ \\ \angle C & = 3a = 3 \times 26^\circ = 78^\circ \end{align} $ Jadi, besar $\angle $B, dan $\angle $C berturut-turut adalah 52$^\circ$, dan 78$^\circ$. Hubungan Panjang sisi dan Sudut pada Segitiga Perhatikan segitiga ABC berikut yang lengkap dengan panjang sisi-sisinya, $\clubsuit$ Ketidaksamaan Segitiga Pada setiap segitiga selalu berlaku bahwa jumlah dua buah sisinya selalu lebih panjang daripada sisi ketiga. Jika suatu segitiga memiliki sisi a, b, dan c maka berlaku salah satu dari ketidaksamaan berikut. i. $ a + b > c $ ii. $ a + c > b $ iii. $ b + c > a $ Ketidaksamaan tersebut disebut ketidaksamaan segitiga. $\clubsuit$ Hubungan Besar Sudut dan Panjang Sisi Suatu Segitiga Pada setiap segitiga berlaku sudut terbesar terletak berhadapan dengan sisi terpanjang, sedangkan sudut terkecil terletak berhadapan dengan sisi terpendek. $\clubsuit$ Hubungan Sudut Dalam dan Sudut Luar Segitiga Besar sudut luar suatu segitiga sama dengan jumlah dua sudut dalam yang tidak berpelurus dengan sudut luar tersebut. Keterangan *. Pada segitiga ABC, $ \angle CBD \, $ adalah sudut luar segitiga ABC dan sudut dalamnya adalah sudut ABC, sudut ACB, dan sudut BAC. *. Dari hubungan sudut luar dan sudut dalam, kita peroleh persamaan $ \angle CBD = \angle BAC + \angle ACB $. Contoh 4. Berdasarkan gambar berikut, tentukan nilai $ x $ dan $ y $. gambar soal 4. Penyelesaian *. Jumlah sudut-sudut pada segitiga adalah $ 180^\circ$. $ \begin{align} 80^\circ + 60^\circ + x^\circ & = 180^\circ \\ 140^\circ + x^\circ & = 180^\circ \\ x^\circ & = 40^\circ \end{align} $ sehingga nilai $ x^\circ = 40^\circ $. *. Menentukan besar sudut $ y^\circ $ , ada dua cara yaitu Cara I $ x \, $ dan $ y \, $ berpelurus jumlahnya $ 180^\circ $. $ \begin{align} x^\circ + y^\circ & = 180^\circ \\ 40^\circ + y^\circ & = 180^\circ \\ y^\circ & = 140^\circ \end{align} $ Cara II Hubungan sudut luar dan sudut dalam, $ y \, $ adalah sudut luar, sehingga $ y = 80^\circ + 60^\circ = 140^\circ $. Jadi, besar sudut $ x^\circ = 40^\circ \, $ dan $ y^\circ = 140^\circ$. 5. Selidikilah, apakah panjang sisi-sisi berikut dapat dibuat sebuah segitiga. a. 3 cm, 6 cm, dan 8 cm b. 4 cm, 7 cm, dan 11 cm c. 5 cm, 8 cm, dan 14 cm d. 10 cm, 10 cm, dan 12 cm e. 6 cm, 9 cm, dan 16 cm Penyelesaian *. Kita cek berdasarkan ketidaksamaan segitiga. Panjang tiga sisi dapat membentuk sisi-sisi segitiga jika ketiga sisinya memenuhi ketidaksamaan segitiga. *. Agar kita tidak memeriksa ketiga sayarat, maka cukup cek untuk sisi terpanjang saja. a. 3 cm, 6 cm, dan 8 cm $ 3 + 6 = 9 > 8 \, $ memenuhi syarat ketidaksamaan segitiga. b. 4 cm, 7 cm, dan 11 cm $ 4 + 7 = 11 \not{>} 11 \, $ tidak memenuhi syarat ketidaksamaan segitiga. c. 5 cm, 8 cm, dan 14 cm $ 5 + 8 = 13 12 \, $ memenuhi syarat ketidaksamaan segitiga. e. 6 cm, 9 cm, dan 16 cm $ 6 + 9 = 15 < 16 \, $ tidak memenuhi syarat ketidaksamaan segitiga. Jadi, panjang sisi-sisi yang akan membentuk segitiga adalah bagian a dan d. 6. Diketahui sudut suatu segitiga PQR berbanding $\angle$P $\angle$Q $\angle$R = 9 5 4. Tentukan a. besar $\angle$P, $\angle$Q, dan $\angle$R; b. sisi yang terpanjang; c. sisi yang terpendek. Penyelesaian *. Untuk mempermudah pengerjaan, kita kalikan $ a $ pada perbandingannya, $ \angle P \angle Q \angle R = 9 5 4 \rightarrow \angle P \angle Q \angle R = 9a 5a 4a $ artinya besar $ \angle P = 9a , \, \angle Q = 5a , \, $ dan $ \angle R = 4a $. *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle P + \angle Q + \angle R & = 180^\circ \\ 9a + 5a + 4a & = 180^\circ \\ 18a & = 180^\circ \\ a & = \frac{180^\circ}{18} \\ a & = 10^\circ \end{align} $ sehingga nilai $ a = 10^\circ $. a. Menentukan besar sudut-sudut segitiganya $ \begin{align} \angle P & = 9a = 9\times 10^\circ = 90^\circ \\ \angle Q & = 5a = 5\times 10^\circ = 50^\circ \\ \angle R & = 4a = 4\times 10^\circ = 40^\circ \end{align} $ b. Sisi terpanjang adalah sisi yang ada dihadapan sudut terbesar yaitu sudut P, sehingga sisi terpanjangnya adalah QR. c. Sisi terpendek adalah sisi yang ada dihadapan sudut terkecil yaitu sudut R, sehingga sisi terpendeknya adalah PQ. 7. Perhatikan gambar berikut, Pada gambar tersebut $\angle B_1 = \angle B_2, \, \angle C_3 =\angle C_4, \, \angle A = 70^\circ$, dan $\angle B = 60^\circ$. Hitunglah a. besar $\angle C_3 + \angle C_4$; b. besar $\angle B_2$; c. besar $\angle D$. Penyelesaian a. Perhatikan segitiga ABC, sudut $C_3 + C_4 \, $ adalah sudut luar dari segitiga ABC, sehingga $ \angle C_3 + \angle C_4 = \angle B + \angle A = 60^\circ + 70^\circ = 130^\circ $. Jadi, nilai $ \angle C_3 + \angle C_4 = 130^\circ $. b. Sudut $ B_1 = B_2 \, $ artinya $ \angle B_2 = \frac{1}{2} \angle B = \frac{1}{2} \times 60^\circ = 30^\circ $. c. Perhatikan segitiga ABC, $ \angle C = 180^\circ - \angle B + \angle C = 180^\circ - 130^\circ = 50^\circ $. *. Pada bagian a, sudut $ C_3 = C_4 \, $ artinya $ \angle C_3 = \frac{1}{2} \times 130^\circ = 65^\circ $. *. Perhatikan segitiga BCD, $ \angle C = 50^\circ + 65^\circ = 115^\circ $ . $ \angle B = \angle B_2 = 30^\circ $ . *. Menentukan besar sudut D, $ \begin{align} \angle B + \angle C + \angle D & = 180^\circ \\ 30^\circ + 115^\circ + \angle D & = 180^\circ \\ 145^\circ + \angle D & = 180^\circ \\ \angle D & = 35^\circ \end{align} $ Jadi, besar $ \angle D = 35^\circ $ .
mencari sisi segitiga dengan sudut